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J .  Phys. A: Math. Gen.  20 (1987)  5205-5218. Printed in the U K  

Crosslinking and gelation between linear polymers: 
DNA-antibody complexes in systemic lupus erythematosus 

Frederik W Wiegel,? Bernard J Geurts? and Byron Goldstein$$ 
Centre for Theoretical Physics. Twente University, PO Box 217, Enschede 7500 AE, The 

Netherlands 
$ Theoretical Division, Group  T-10, Los Alamos National Laboratory, University o f  Califor- 
nia, Los Alamos, NM 87545, USA 

Receibed 12  March 1987, in final form I 1  May 1987 

Abstract. In  the autoimmune disease systemic lupus erythematosus the D N A  molecules of 
an  individual are attacked by its own antibodies. As these antibodies are bibalent they 
can crosslink different D K A  molecules which can lead to the formation of i>w,-antibody 
complexes and  gels. Statistical properties of these complexes are  deribed and evaluated 
analytically in the limit of very long I j N A  molecules, as  well as  the concentrations at which 
a gel is being formed. We also present various numerical results for D N A  molecules of 
intermediate lengths. This work can also be considered as  a theory of the crosslinking and 
gelation of linear polymers. 

1. Introduction 

Systemic lupus erythematosus appears to be an autoimmune disease in which patients 
form antibodies against some of their own D N A  molecules (Stollar 1981). The basic 
antibody-IINA geometry is shown in figure 1. A full discussion can be found in Wiegel 
and Goldstein (1987) in which we started to apply the methods of equilibrium statistical 
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Figure 1. Schematic diagram indicating the dimensions of an IgG molecule bound bivalently 
to a D N A  molecule; from Wiegel and Goldstein (1987).  
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mechanics to the binding of a large number of antibodies to a single very long DNA 

molecule. In the present paper we consider the full problem in which a large number 
of antibodies can bind to a large number of D N A  molecules. As each antibody has 
two binding sites it can crosslink different D N A  molecules which can lead to the 
formation of DNA-antibody complexes and gels. Our aim is to calculate the statistical 
properties of these complexes as well as the DNA-antibody concentrations at which 
gelation occurs. We shall follow the generating function method in the form in which 
it is used, for example, by Wiegel and Perelson (1982) to determine the statistical 
properties of rouleaux consisting of red blood cells. 

The model we consider consists of N identical D N A  molecules and M identical 
bivalent antibodies enclosed in a volume V and in thermodynamic equilibrium. Each 
D N A  molecule possesses K regularly spaced possible binding sites for an antibody (cf 
Stollar (1981) for a brief discussion of the main features of these binding sites on the 
D N A  backbone). An antibody can be in one of four states: ( i )  it can be free; (ii) it 
can be bound to D N A  with one of its two binding sites, having a weight factorf,; ( i i i )  
it can be bound to the same D N A  molecule with both binding sites, having a weight 
fi and (iv) it can crosslink two different D N A  molecules, having a weight f3. In 0 2 we 
determine some generating functions related to a single complex which consists of m 
antibodies and n D N A  molecules. Then, in Ei 3 expressions for the statistical properties 
of these complexes are derived and related to these generating functions. Section 4 is 
devoted to the statistical properties and the gelation if the D N A  molecules are very 
long. Section 5 is devoted to a discussion of the numerical results obtained for D N A  

molecules of intermediate lengths. 

2. A single complex of m antibodies and n DNA molecules 

Let Q K  ( m ,  n )  denote the configuration sum of a single ‘rooted’ DNA-antibody complex 
consisting of m antibodies and n D N A  molecules in the case in which the antibodies 
as well as the D N A  molecules are counted as indistinguishable geometrical objects. All 
D N A  molecules are of the same length and consist of K regularly spaced binding sites 
for an antibody. The complexes are assumed to have the topology of a tree, and a 
‘root’ is assigned to one end of one of the D N A  molecules. Using counting variables 
z for the total number of binding sites per DNA,  6 for the number of antibodies in the 
complex and 7) for the number of crosslinks, the generating function is defined as 

In the tree approximation, a complex consisting of n D N A  molecules has n - 1 crosslinks. 
The use of generating functions to study macromolecular complexes has been reviewed, 
for example, by one of us (Wiegel 1983). 

In  figure 2 a diagram representing a D N A  molecule with 0, 1 ,2 , .  . . , crosslinks to 
other D N A  molecules is drawn. It shows that if we follow one particular (arbitrarily 
chosen but otherwise fixed) D N A  we either d o  not encounter any crosslink to another 
D N A  at all, or we do. I f  we do, the crosslink encountered is given a weight factor 
z671fjA where the function A(& 7) denotes the generating function with respect to m 
and n of the configuration sum over all possible forms of the ‘appendix’. I f  the 
generating function of a single D N A  with antibody attached to it, but without crosslinks, 
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K A 
Figure 2. Diagram showing that for any configuration a fixed D N A  molecule (hatched 
double line) either does not contain a crosslink to another DNA (single line) or does contain 
a crosslink. The first crosslink is indicated by a wavy line and its 'appendix' by two double 
lines. Note that a hatched double line corresponds to a factor Q ( z ,  6, q ) ,  a single line is a 
factor Qo( z, 6). a crosslink is a factor z[vf i  and a double line with label K i s  a factor qK (6, 7). 

is denoted by Qo(z, t), then the total generating function can be written as 

Q ( Z , ~ , ~ ~ ) = Q O ( Z , ~ ) + O O ( Z , ~ ) Z ~ ~ ~ A ( ~ ,  v ) Q o ( z , t ) + . . .  ( 2 . 2 a )  

( 2 . 2 b )  

( 2 . 2 c )  

The generating function Qo was calculated by Wiegel and Goldstein (1987) with 

= Qo(z, O ( 1  -z572f,A(t9 T)Qn(Z,  

= Q d z ,  5)+ Qo(z, O Z 5 d X 5 ,  7 7 ) Q ( Z ,  5, 77). 

QK ( 0 , l )  = 1 ,  and found to be 

Qo(z, ( ) = [ I  - z - z 5 f l - ( 1 + 5 f l ) 2 ~ 4 5 f 2 ( l - ~ 2 5 f 2 ) - 1 - ( 1 + 5 f l ) ~ 5 5 2 f ~ 1 - ' .  ( 2 . 3 )  
In  deriving ( 2 . 3 )  it was assumed that a doubly bound antibody spans exactly two 
possible binding sites on the DNA molecule. In view of the definition of A(.$, v), one 
may write 

K - l  

A(5, 77) = c q K - I - / ( t ,  77)qd5, 77). 
/=0 

The functions q K - I - l  and q/ which appear here are given by 

( 2 . 4 )  

a 0 0 0  

q L ( 5 , 7 7 ) =  c c Qr(m, n)5"77"-I L =  K - 1 - 1  or  L=l .  ( 2 . 5 )  
m=O n = l  

Note that in the last two equations the length of the DNA is fixed at K binding sites 
(one of which is involved in a crosslink) whereas in (2.1) and (2 .2~2,  b, c) the generating 
function appears with respect to the length of the DNA. In this sense our generating 
function formalism treats the DNA in the trunk of the tree differently from the DNA in 
the branches of the tree. This is indicated in figure 2 as explained in the caption. In 
( 2 . 4 )  the sum of the indices on q is equal to K - 1,  representing the fact that all DNA 
molecules have exactly K possible binding sites each, one of which is blocked by the 
crosslink. Of course, the function Q(z, 5, 77) determines both qK (5, 77) and QK ( m ,  n ) ,  
since 

(2.7) 
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where I'], Tz, r3 are closed contours around the origin, for example, circles with radii 
small enough for the series (2.1) to converge. 

Combination of (2.2 b )  with (2.4) and (2.6) in principle determines the generating 
function Q( z, (, 17) and hence the configuration sums QK (m, n). The rest of this section 
is devoted to the study of the function q K ( &  7 )  which also determines the statistical 
properties of the DNA-antibody complexes. The contour integration in (2.6) can be 
performed using Cauchy's theorem. One straightforwardly obtains 

where 

and 

1 - ZfZf? 
( z ,  - 2 2 )  . . . ( z ,  - z7) 

CI = 

(2.10) 

1 - zS(f2 
( z , - z , ) .  . . ( Z , - - Z 6 )  

c7 = 

and where z ,  , . . . , z, are the roots of 

1 - z (  1 + 5fi + ($?A ( t, 17 1)  - z 2 (  5f2 1 + z3[ 5f?( 1 + 511 ) + ['rlfrfTA( 5, 7 11 
- z ~ [ ~ . ~ i ( l + ~ f i ) 2 ~ - z i [ ~ ~ f i c ~  + t f i ) ~ + ~ ~ [ g j - ; ( i  +(fi)i =o .  (2.11) 

The left-hand side still contains the unknown function A. However, combination of 
(2.8) and (2.4) gives the following expression for A in terms of the roots z , ,  . . . , 27:  

Insertion of (2.12) into (2.11) then yields an equation in which only the roots z l , .  . . , z ,  
appear as unknowns. The determination of these roots is a complicated matter, which 
can be treated numerically, leading to a self-consistent calculation of z, , . . . , z7 as 
functions of [ and 17. 

In  94 we consider the problem in the case of very long D N A  molecules. The 
resulting equation simplifies greatly if K >> 1 and can be treated analytically in an  
approximate way. In 9 5 results based on a numerical evaluation of the above scheme 
will be shown graphically. First, we turn to the determination of the configuration 
sum of the system and derive expressions for the statistical properties of the complexes. 

3. Statistical properties of DKA-antibody complexes 

In  order to calculate the statistical properties of DNA-antibody complexes we need 
the configuration sum of the system. This calculation involves several steps. 
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Let v f  be the number of free antibodies, v, the number of 'clean' D N A  molecules, 
i.e. D N A  molecules with no antibody attached to them, and v ( m ,  n )  the number of 
DNA-antibody complexes consisting of m antibodies and n D N A  molecules. A macro- 
state of the system can then be represented by the set of numbers { v f ,  v,, v ( m ,  n)}, 
provided these numbers satisfy 

.M \ 

v,+ 1 1 m v ( m ,  n )  = M 
m - I  n = I  

(3.1) 

The number of microstates compatible with a given macrostate { v,, v,, v( m, n ) }  will 
be denoted by R{vf, v,, v ( m ,  n)}. I t  equals the number of different ways to divide M 
antibodies and N t i N A  molecules in groups such that there are v f  free antibodies, v, 
clean D N A  molecules and v ( m ,  n )  complexes of m antibodies and n D N A  molecules. 
Following a reasoning similar to that found in Wiegel and Perelson (1982)  one obtains 

Each complex, free antibody or clean D N A  molecule can be moved around through 
the volume V; this leads to a combinatorial factor V/v,, where U,) is some fixed 
elementary volume, roughly equal to the average excluded volume of a single complex. 

Finally, we notice that Q K ( m ,  n )  was defined to be the configuration sum of a 
rooted DNA-antibody complex fixed in space. Since the complexes are physically 
without roots and the antibodies and D N A  molecules are indistinguishable, the physi- 
cally correct configuration sum for the complexes is [ ( m !  n!)/2n]QK ( m ,  n). Hence, 
for the total configuration sum Q{ v f ,  v,, v( m, n)} one obtains 

(3.4) 

The equilibrium distribution { v f ,  v,*, v*(m, n)} is found by determining the maximum 
of Q{ vr, v,, v ( m ,  n)} subject to the two constraints (3.1) and (3.2). Introducing Lagrange 
multipliers p and A for these constraints one finds that this problem is equivalent to 
determining the unconstrained maximum of 

U V f ,  vc,  v ( m ,  n)} 
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Using Stirling's approximation (i.e. In (x!) = x In (x )  - x  if x >> 1) one finds for the 
equilibrium distribution 

V 
( 3 . 6 ~ )  

V 
U * (  m, n )  = - QK ( m ,  n )  

4nvo 
( 3 . 6 ~ )  

The requirement that {v:, v,*, u*(m,  n ) }  has to satisfy both (3.1) and (3.2) leads to the 
following system of equations for p and A :  

( 3 . 7 ~ )  

M N  

$ Q ~ ( o ,  1) e-* + a  Q K ( m ,  n )  e-/rm-An - - voN/ V. (3.76) 

This system of equations can be rewritten in terms of the function qK (8, a )  studied in 
the previous section. Indeed, since 

m = I  n = I  

one may write (3.7~7, b )  as 

(3.9a) 

a a ( Q K ( o , 1 ) + q K ( 5 , a ) ) = v o N l V ~ c N .  (3.9b) 
Given numerical values of CM and CN the last two equations determine the correspond- 
ing values of [ and 7, from which p and A follow through the identification 

8 = e-" a = e-A. (3.10) 
In (3.9a, b)  CM and CN are the volume fractions of antibody and D N A  molecules, 
respectively. Knowledge of the function qK (6, 7)  not only allows a solution of (3.9~7, b), 
but also gives some statistical properties of the complexes. For example, the total 
number of complexes C at given C, and CN values is determined by qK since 

(3.1 1 )  

provided (6, a )  are solutions of (3.9a, b). Hence, the average number of antibodies 
per complex ( m )  is given by 

and the average number of D N A  molecules per complex ( n )  by 

(3.12) 

(3.13) 
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In  the next section the calculational scheme of § 2 will be pursued further for the 
case in which the D N A  molecules are very long. We shall demonstrate that the system 
shows gelation and we shall estimate the range of C, and CM values for which gelation 
occurs. 

4. Asymptotic statistical properties of DNA-antibody complexes 

Expression (2.8) for the function qK (5. I)) shows that, for K >> 1, qK can very well be 
approximated by 

q K ( 5 , I ) )  = . ( S ) C I Z ; K - ’  (4.1) 

where z I  is the root with the smallest modulus (it can easily be seen that z I  has to be 
real for real 6 and 7 7 ) .  Hence, the generating function A([, I)) can be approximated by 

A(& 7 7 )  = K a ’ ( & ) ~ : z ; ~ - ’ .  (4.2) 
Inserting (4.2) into (2.11) and rearranging the terms leads to the following equation 
for z l :  

F ( z , 6 ) = G ( z , 5 , 7 7 )  (4.3) 

where 

(1 + 5 ” f ’ ) Z 5 t 2 f 2  (4.4a) Z“f2 

1 - z25.f2 
F ( Z,  5 )  = 1 - Z (  1 + ) - ( 1 + [fl)’ ~ - 

G ( z ,  5 , v )  = Ka”(S)c;SI)hz-”.  (4.46) 

Notice that both F and G depend on the model parameters f l ,  f ?  and J;.  In view of 
(3.10) we restrict ourselves to positive real [, I) values. In  figure 3 both sides of (4.3) 

Figure 3. Both sides of equation (4 .3)  as  functions of z, for 1) > qr, (curve 1 ), q = qo (curve 
2 )  and  Q < Q(, (curve 3) .  
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are shown as functions of z, at some fixed 5 value and for a number of 7 values. It 
is obvious from the figure that there is a solution if 0 s  7 s ~ ~ ( t ) ,  and that there is no 
solution if 77 > 7,,(€). Here ~ " ( 5 )  is the value of 7 at which both curves osculate, say 
at z = z,( 0, i.e. 

(4 .5a)  

(4.5b) 

where the subscript z denotes differentiation with respect to z. For 77 close to but 
smaller than 7iJ((), the physically relevant solution of (4.3) can be written as 

(4.6) 

The factor in front of ( ~ ~ ( 5 ) -  7 7 ) '  will be denoted by B ( 5 ) .  Here, as in (4.5~2, b )  a 
subscript z or 77 implies differentiation with respect to that variable. 

Both functions zJ5) and ~ " ( 5 )  can be related to z,([), the positive root of F. Since 
F does not contain any large parameters it can be approximated by a straight line in 
the vicinity of zo( 5) 

F(z ,  5)  = F : ( z , , ( O ,  5 ) ( z  - Z " ( 5 ) ) .  (4.7) 

Assuming that z,(5) = z ( , ( [ ) ,  the osculation relations (4.5~1, b )  can be written in the form 

( 4 . 8 ~ )  

(4.8b) 

F; . (zo(5) ,  5 ) ( z c ( t )  - zCJ(5 ) )  = K ~ ' ( [ ) C ~ ~ T ~ ~ ( O ~ ~ Z ,  

F,(z,(5), 5) = F : ( z ( J ( 5 ) ,  5) = - K ' a ' ( 5 ) ~ ~ 5 7 7 , ~ ( 5 ) f ~ z ; ~ ~ '  

and thus, dividing ( 4 . 8 ~ )  by (4 .86) ,  

~ , ( 5 ) = ( 1 + 1 / K ) ~ ' z , , ( 5 ) .  (4.9) 

Hence, from (4.86) and (4.9) we find 

where we used 

lim (1 + I /  K ) ' + '  = e = 2.71828. . . , 
K - X  

(4.10) 

(4.11) 

From (4.9) one notices that indeed zJ5) = z , , ( t )  i f  K >> 1 and that osculation always 
occurs to the left of zo( 6 ) .  

In order to derive some properties of z, and vo one has to study the root z,, in 
more detail. It is implicitly given by 

F(z ,  € ; f , , f : ) = O  (4.12) 

where the parameters f l ,  f 2  are included for completeness. These parameters can only 
take positive values. As Fz < 0 i f f , ,  f i  and [ are positive and if 0 4 z < (5f')-"*, there 
is only one root in this interval. Using the implicit function theorem, it can be shown 
that z,) is a decreasing function of 5 and of the parameters. Finally one has for all 
allowed parameters and 5 values that O <  z ( J s  1. 
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Through (4.9) these results also hold for z c ( 0  and since K >> 1 the function ~ ~ ( 5 )  
is essentially proportional to z t " ( 6 ) .  Hence ~ " ( 5 )  also decreases sharply as 6 or any 
of the parameters f i ,  fi increases. Moreover, combination of (4.1) and (4.6) gives for 
q K  

Furthermore, since G(  z, 5, 7 )  + 0 as 7 + 0, one has 

q K  ( 5 , O )  = a ( 5 1 c I z o  - ' ( 5) 
so 

q K  (5, 70(5)) = eq, ( & O )  if K >> 1. 

From (4.10), (4.13) and (4.14) one finds for the left-hand side of (3.9b) 

(4.15) 

(4.16) 

for K B 1 ,  provided 5 is large enough such that qK (5, 7 )  >> 1 for all values of 7 between 
0 and ~ " ( 5 ) .  

We now estimate the values of 5 for which the above approximation is valid. This 
will result in an estimate of the region of DNA-antibody concentrations for which a 
gel is formed. By definition qK (0,O) = 1 and hence .(()cl + 1 if (+ 0, since zJ0) = 1 .  
For small 5 values one may thus write 

z o ( 0  = 1 + 5a€zo(o) (4.17) 

where, by the implicit function theorem, 

(4.18) 

Thus, for small 5 values 

q K ( 5 , O )  =exp[(K + l ) ( f i + f X l  (4.19) 

which, for K >> 1 ,  is much larger than unity for small 5 values, say for 6 2  lc where 

I f  K > > 1  then tC<< 1 and since F,(zo(5),5)+-1 and a ( 5 ) c 1 + 1  as 5 + 0  we can 
5 c =  OIl / [ (K + 1HfI +fi)l). 

approximate the upper bound (4.16) for the left-hand side of (3.9b) for (> & by 

(4.20) 

Likewise we can obtain an estimate for an upper bound for ( 3 . 9 ~ ) .  Indeed the 
left-hand side of (3.90) is bounded from above by 

(4.21) 
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Approximating the integral by a one-step Simpson method one obtains, using (4.14)- 
(4.16) for 5<< 1 

resulting up  to first order in K in the estimate 

(4.22) 

(4.23) 

Thus, if CM 3 CM,c, where C,,,,c is given by H(5 , )  approximately, the inverse of 
( 3 . 9 ~ )  giving 5 as a function of 7 and CM will be such that 5 >  &. If, in addition, 
CN 3 CN,c, where CN,c is given by (4.20) essentially, there is no solution to (3.9~2, 6). 
This is interpreted to indicate gelation in the system, i.e. there are CN and CM values 
such that not all D N A  molecules and antibodies can be accommodated in complexes 
of a finite size, hence macroscopic aggregates of DNA-antibody are formed. 

We notice that both Ck,c and CMsc decrease as K and/or  f 3  increase. In both 
situations the probability of crosslinks being formed increases, so gelation will occur 
at lower concentrations. Likewise, i f f ,  and/or  f i  increase, CN.c and CM,c increase 
provided f, +f2> 8 e h / ( e +  1). This corresponds to situations where more antibodies 
are bound to one and the same D N A  molecule, thus decreasing the possibility for 
crosslinks to form, and a gel is only formed at higher concentrations. 

In 5 5 we discuss numerical results obtained on the basis of (2.11) in combination 
with (2.12) for the statistical properties introduced in 3 for D N A  molecules of 
intermediate lengths. Also the asymptotic results obtained above will be verified and 
extended by these numerical results. 

5. Numerical results for the statistical properties of DNA-antibody complexes 

In  this section we first consider the numerical procedure to evaluate (3.94 6) and to 
calculate such properties as ( n ) ,  ( m )  and C. Next some results will be shown for ( i )  
the boundary function vo( 5) and the generating function qK (5, T ) ,  ( i i )  some statistical 
properties as a function of CN and CM at constant model parameters and  ( i i i )  various 
sets of model parameters. 

The central problem in obtaining statistical properties of DNA-antibody complexes 
is to solve the system of equations (3.94 b )  for 5 and 7 at various CN and C M  values. 
This requires a knowledge of the generating function qK which was expressed in terms 
of the roots z ,  , . . . , z ,  of (2.1 1). The roots were determined in a self-consistent way at 
some fixed set of model parameters for a large number of (6, 7 )  pairs on a variable 
self-adjusting grid. In this way the generating function qK was obtained and the 
left-hand sides of (3.9~7, 6)  could be determined numerically. The integral in ( 3 . 9 ~ )  
was approximated using Simpson’s rule and the derivative was determined by taking 
finite differences. 

The rate of convergence of this self-consistent approach was extremely high for 
( 5 , ~ )  pairs with 7 away from ~ ~ ( 5 )  and decreased rapidly if 7 approached ~ ~ ( 5 ) .  
The function ~ ~ ( 5 )  was determined with a simple bisection method for a large number 
of 5 values, using the convergence-divergence of the method as the criterion for 
selecting new intervals. 
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Once the left-hand sides of (3.9a, b )  were determined, (3 .96)  was inverted at constant 
C, to obtain a solution curve ~ ( 5 ;  C,) and along this curve the corresponding C, 
values were determined from the left-hand side of (3 .9a ) ,  such that (5, ~ ( 5 ;  C,)) was 
a solution to (3.9a, b ) .  This procedure was repeated for a number of C, values, thus 
yielding the statistical properties as a function of CN and CM for a given set of model 
parameters. 

An example of the generating function q K  is shown in figure 4. It is typical for all 
sets of model parameters and shows that qK is an increasing function of both 5 and 
T ,  bounded from above by q K ( &  ~ ~ ( 5 ) )  which itself is a sharply increasing function 
of 5. Notice that even at  this small value of K ,  q K  (5, vo( 5) )  is roughly proportional 
to q K  ( 5 , O )  as remarked below (4.14) and (4.15) with a proportionality constant roughly 
equal to e. 

5 1 '  ' I ' ' ' ' 1 

0 0.5 
rl 

1 .o 

Figure 4. The function 4, (t, 7 )  as  a function of 
j = I ,  2, . , . , as  indicated on the corresponding curves. K = I O  and  f ,  = f 2  = f 7  = I .  

for € = j A g  with A t  = 5 x lo-' a n d  

The boundary curve qo( 6)  decreases very rapidly as a function of 6, which is mainly 
a consequence of the fact that zo( 5)  decreases as 6 is increased and essentially 77" = z t + ' .  
As K or any of the model parameters increases 77" decreases, which can be traced 
back to the fact that zo is a decreasing function of all model parameters, as was 
discussed in the previous section. The dependence of vO on f 3  or K is quite strong, 
as can be seen from (4.10). The dependence onf ,  andf, is less dominant. The function 
~ " ( 5 )  is plotted in figure 5. 

We now turn to the results obtained for the statistical properties ( n ) ,  ( m )  and 
Cv = Cu,/ V, the volume fraction occupied by the complexes. The results obtained for 
a reference case will first be considered and the influences of variations of the parameters 
on these quantities will then be investigated. 

In  figures 6 and 7 the average number of D N A  molecules per complex ( n )  and the 
average number of antibodies per complex (m) as a function of CN and C, are shown 
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6 - 2  
t p  5 

2 

Figure 5. Plot of In vl$ as a function of In 5 for K = 5 ,  10, 20. I n  all cases f ,  = f, =,f l  = 1. 

, . , I , , ,  , I , , , ,  
0.25 0.5 0.75 0 

L M  

Figure 6. The average number of D N A  molecules per complex as a function of CIM. The 
values of C, start at 0.01 and increase w i t h  steps of 0.01. In all cases K = 10 and 
f ,  = f 2  =j7 = 1. 
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0 0.25 0.5 0.75 
CM 

Figure 7. The a\erage number of dntibodq molecules per complex d s  a function of c,, 
with parameters ds i n  figure 6. 

for situations in which no  gel is formed. From them, one recognises that both ( n )  and 
(m) are increasing functions of Ch, and Cb,. This also shows that the resulting gels 
will have a variety of crosslink densities which are essentially determined by C,. 
Taking ( m ) / ( n )  at the gelation boundary as a measure for the crosslink density in the 
gel, one sees that this density decreases as Ch increases. 

A numerical evaluation of C, as a function of Cu and C,  shows that for small 
CM values the number of complexes increases rapidly as CM increases and the increase 
is sharper as Cb is larger. For CM approaching the corresponding gelation value we 
find that the number of complexes decreases. Apparently, in combination with figures 
6 and 7, close to gelation there are fewer but larger complexes. 

We have also studied the influence of variations in the model parameters on the 
statistical properties ( n ) ,  ( m )  and C,. First, the influence of varying the number of 
possible binding sites K on the DNA molecule was considered. Our results for ( n )  and 
(m) indicate that, as the number of possible binding sites K increases, ( n )  and ( m )  
increase at the same Cnq and C, values. The influence of varying K on C, shows 
that in situations in which there is a surplus of DNA molecules the number of complexes 
increases as the number of possible binding sites on the DNA increases. However, 
since for larger K gelation occurs at lower C ,  and C,, values (cf (4.20) and (4.23)) 
the maximal number of complexes decreases rapidly as K is increased. 

Next we varied the model parameters f i t  fi and f 3  keeping the number of possible 
binding sites on the D N A  molecule fixed. We found that as f ,  and fi are increased, 
more, but smaller complexes with more densely packed DNA molecules occur, and  as 
f 3  was increased, the complexes become larger (i.e. more DNA molecules on the average 
per complex) but with less antibodies per D N A  molecule. 

Finally we considered the gelation boundary CN as a function of CM which is a 
set of C N ,  C, pairs such that the system is just on the transition boundary between 
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Figure 8. The gelation boundary for K = 5 ,  10, 20. In all cases f, = f2=h= 1.  The gel 
region is on the upper  right-hand side of the boundary. 

the fluid phase, where a large number of complexes exists, and the gel phase, where 
macroscopic DNA-antibody aggregates are formed. In  the previous section this 
phenomenon was investigated in the asymptotic limit. Here we present the data 
obtained from the full numerical evaluation of the computational scheme discussed 
in Q 2. The influence of varying the number of possible binding sites K is characterised 
in figure 8. It shows that, as K is increased, gelation occurs at lower CM values for 
constant CN and vice versa. In the previous section it was shown that CN,c and CM,c 
are proportional to K - ’ .  There is a remarkably good agreement between (4.20) and 
(4.23) and the numerical results, even though the values of K are quite small. This is 
due to the fact that the roots z I ,  . . . , z ,  of (2.1 1) are very well separated from each 
other, so the approximations made in (4.1) and (4.2) for the generating functions qK 
and A are already very accurate for relatively low values of K. 

A new aspect which did not show up in the asymptotic considerations of Q 4 is the 
fact that the gelation boundary curve is two-valued for Cw close to CM,c. This implies 
that for suitable Ch, the addition of extra D N A  molecules to an  already existing gel 
causes the gel to disintegrate. The influence of variations in f l ,  f 2  and f A  can be 
summarised as follows. Chl,c and C,v,c turn out to decrease as f 3  is increased, and 
increase as f ,  and/or  fi are increased. This is in full agreement with the asymptotic 
results of Q 4. 
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